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It was first demonstrated experimentally by H. Giesekus in 1965 that the second
normal stress difference in polymers can induce a secondary flow within the cross-
section of a non-axisymmetric conduit. In this paper, we show through simulations
that the same may be true for suspensions of rigid non-colloidal particles that are
known to exhibit a strong negative second normal stress difference. Typically, the
magnitudes of the transverse velocity components are small compared to the average
axial velocity of the suspension; but the ratio of this transverse convective velocity to
the shear-induced migration velocity is characterized by the shear-induced migration
Péclet number χ which scales as B2/a2, B being the characteristic length scale of
the cross-section and a being the particle radius. Since this Péclet number is kept
high in suspension experiments (typically 100 to 2500), the influence of the weak
circulation currents on the concentration profile can be very strong, a result that has
not been appreciated in previous work. The principal effect of secondary flows on
the concentration distribution as determined from simulations using the suspension
balance model of Nott & Brady (J. Fluid Mech. vol. 275, 1994, p. 157) and the
constitutive equations of Zarraga et al. (J. Rheol. vol. 44, 2000, p. 185) is three-fold.
First, the steady-state particle concentration distribution is no longer independent of
particle size; rather, it depends on the aspect ratio B/a. Secondly, the direction of the
secondary flow is such that particles are swept out of regions of high streamsurface
curvature, e.g. particle concentrations in corners reach a minimum rather than the local
maximum predicted in the absence of such flows. Finally, the second normal stress
differences lead to instabilities even in such simple geometries as plane-Poiseuille flow.

1. Introduction
Over the past three decades, the migration of particles across streamlines in

concentrated suspensions has received a great deal of attention. The flow geometries in
which particle migration has been studied experimentally are channel flow (Leighton
& Acrivos 1987; Schaflinger, Acrivos & Zhang 1990; Koh, Hookham & Leal 1994;
Lyon & Leal 1998), Couette flow (Leighton & Acrivos 1987; Tripathi 1998; Shapley,
Armstrong & Brown 2002), wide-gap Couette flow (Abbott et al. 1991; Tetlow et al.
1998), tube flow (Hampton et al. 1997), parallel-plate flow (Chapman 1990; Chow
et al. 1994; Krishnan, Beimfohr & Leighton 1996; Merhi et al. 2005; Bricker & Butler
2006), cone and plate flow (Chow et al. 1995; Fang et al. 2002), eccentric cylinder flow
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(Phan-Thien 1995) and resuspension (Leighton & Acrivos 1986; Altobelli, Givler &
Fukushima 1991; Chapman & Leighton 1991; Acrivos, Mauri & Fan 1993; Norman,
Nayak & Bonnecaze 2005). These studies have shown that particles under shear
generally migrate from regions of high concentration to low, from regions of high
shear stress to low, and from regions of high streamline curvature to low.

In order to model the migration of particles across streamlines, two major
approaches have been employed in the literature: the trajectory model (also known as
the diffusive flux model), and the suspension balance model. The trajectory approach
is based on a simple view of the kinematics of particle interactions. In this model,
when a given test particle in a simple shear flow interacts with another particle
approaching from above it, the test particle is displaced downwards. On the other
hand, when the second particle approaches the given test particle from below, the test
particle is displaced upwards. The microscopic reversibility normally expected for
Stokes flow is presumably broken by irreversible non-hydrodynamic interactions via
surface roughness (Smart & Leighton 1989; DaCunha & Hinch 1996). If there is a
gradient in shear or gradient in concentration of the particles across the streamlines,
there is a gradient in the rate of interactions experienced by the particle, which results
in migration of the particle across the streamline. In addition, viscosity gradients
result in displacement of particles from regions of higher viscosity to regions of
lower viscosity. Using these simple intuitive arguments, Leighton & Acrivos (1987)
proposed the following particle flux constitutive equation for channel flow

Ny = −Kσ

φ2

τ

∂τ

∂y
γ̇ a2 − K||

φ2

µ

∂µ

∂φ

∂φ

∂y
γ̇ a2. (1.1)

The shear-induced gradient diffusion coefficient thus scales as γ̇ a2, where γ̇ is the
local shear rate, a is the particle radius, τ is the magnitude of the local shear stress
and µ is the viscosity of the suspension as a function of the volume fraction φ. The
parameters Kσ and K|| were experimentally estimated to be 0.6 and 0.7, respectively,
at 45 % volume fraction. This model was extended to more general two-dimensional
shear flows by Phillips et al. (1992).

N = −Kca
2
[
φ2∇γ̇ + γ̇ φ∇φ

]
− Kη

φ2

µ

∂µ

∂φ
γ̇ a2∇φ. (1.2)

The constants Kc and Kη were empirically determined to be 0.43 and 0.65, res-
pectively. The model was further modified by Tetlow et al. (1998) by determining
Kc and Kη as linear functions of φ, but retained its essential form. Since the model
devised by Leighton & Acrivos was applicable only to simple planar unidrectional
flows, the extension by Phillips et al. to more complicated flows implicitly assumes
that particle migration is isotropic. Since this model always predicts migration
down a shear gradient, it is unable to explain the apparent lack of migration in
parallel-plate flow (Chapman 1990; Merhi et al. 2005; Bricker & Butler 2006) in
which the shear rate increases radially outwards, and the outward migration of
particles in cone and plate flow (Chow et al. 1995; Fang et al. 2002), in which the
stress is constant. To account for the effects of streamline curvature, Krishnan et al.
(1996) proposed an additional particle flux term in the diffusive flux model which
causes particle migration owing to gradients in streamline curvature. Their modified
constitutive equation for the radial flux balance in the parallel-plate geometry is

Nr = Kr⊥
φ2

r
γ̇ a2 − Kσ⊥φ2a2 ∂γ̇

∂r
− K⊥

φ2

µ

∂µ

∂φ

∂φ

∂r
γ̇ a2. (1.3)
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The symbol ⊥ denotes migration perpendicular to the plane of shear. The constant
Kr⊥ was taken to be 0.7, thus balancing the shear rate gradient term exactly. Merhi
et al. (2005) suggested a slightly greater value for Kr⊥, leading to a small outward
radial migration. A similar curvature term can be added to the radial flux balance
in the case of wide-gap Couette flow. However, in this case, the migration is in the
plane of shear from streamlines of higher curvature to streamlines of lower curvature,
and therefore should be characterized by a different coefficient which also may be a
function of concentration. Thus, it can be seen that although the diffusive flux model
is simple and intuitive, it requires numerous coefficients which must be determined
empirically.

The suspension balance model, on the other hand, provides a more unified approach
for describing particle migration (e.g. Nott & Brady 1994; Morris & Boulay 1999;
Fang et al. 2002). In this model, particle migration is ascribed to gradients in the
particle stress tensor Σ

p
ij . As described in § 2, with the inclusion of the anisotropic

terms in the particle stress tensor, the suspension balance model successfully explains
the migration behaviours in all perturbations of simple shear flows, including the
curvature-induced migration in the parallel-plate and cone and plate geometries.
What has not been previously appreciated is the direct effect of the non-Newtonian
particle stress on the convection within the cross-section of a conduit.

Consider the simple example of unidirectional flow of a suspension through a
conduit of arbitrary cross-section. The total stress Σij in a suspension is the sum
of the stress contributions from the suspending liquid and the particles. At high
concentrations, the particle stress and consequently the total stress is anisotropic
in nature, rendering concentrated suspensions non-Newtonian. If the particle stress
tensor is taken to be isotropic (thus assuming that the suspension is Newtonian),
it can be shown that the cross-sectional components of velocity are identically zero
under fully developed flow conditions. However, if the anisotropy of the particle stress
tensor is factored in, then this trivial solution no longer satisfies the flow equations,
the components of the velocity vector in the plane of the cross-section of the conduit
are necessarily non-zero, and a helicoidal flow of the suspension results at steady
state.

The existence of such flows is already well established in polymer literature. Green &
Rivlin (1956) were the first to conclude that it is, in general, not possible to have steady
and rectilinear flow of a viscoelastic polymer through a channel whose cross-section
is not circular. They used a fourth-order fluid model to show that the second normal
stress differences could produce a secondary flow in the steady flow of the fluid in
a non-circular conduit. This was first verified experimentally by Giesekus (1965). He
injected a stream of dyed polymer into a 5 % solution of polyacrylamide flowing in
an elliptical channel and observed that the dye exhibited a swirling motion as the
polymer flowed through the channel at a Reynolds number of order 10−4. Secondary
currents in polymer flows were also studied experimentally by Semjonow (1967)
and Dodson, Townsend & Walters (1974) by similar visual techniques. Dooley and
colleagues have demonstrated the strong impact of secondary flows in the coextrusion
process by studying the deformation of the interface between two contrastingly
pigmented layers of low-density polyethylene during flow through a square channel
(Debbaut et al. 1997; Debbaut & Dooley 1999). Brady & Carpen (2002) also showed
that in two-layer Couette flow and the falling film geometry, the flow field for a
suspension of non-colloidal particles (modelled with constant concentration) was
unstable to spanwise perturbations, the instability being driven by a second normal
stress difference jump between the suspension and Newtonian phases. The secondary
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currents in Brady & Carpen appear as a perturbation from an unstable steady state
that does not have any circulation. However, in this paper, we demonstrate that the
steady-state distribution itself is accompanied by secondary currents for suspension
flow through conduits. The similarity between the secondary motions induced in
viscoelastic polymer flow and suspension flow in channels is that their magnitudes
are inherently weak, typically two to three orders of magnitude lower than the
axial velocity. The subtle difference, however, is that in suspension flow, these weak
secondary flows are linked to the concentration distribution equation by a convective
term that scales as the shear-induced migration Péclet number χ = B2/a2 which, for
typical experimental conditions, is of order 102 or higher, B being a characteristic
dimension of the cross-section. In this paper, we demonstrate the effects that these
circulation velocities may have on the steady-state particle distribution. Note that
the Péclet number we refer to in this paper is not the ratio γ̇ a2/(kT /6πµa) of
hydrodynamic to Brownian diffusivity, but rather the ratio of the convective velocity
scaling to the shear-induced diffusive velocity as defined in (4.5).

This paper is arranged as follows. In § 2, the suspension balance model is formulated
using the constitutive equations of Zarraga, Hill & Leighton (2000), and the capability
of this anisotropic model for describing particle migration behaviours in curvilinear
flows is described. In § 3, the effect of the geometry of the conduit cross-section on
the velocity distribution is analysed assuming a constant concentration throughout
the cross-section of the conduit. This would be the velocity distribution expected in
the case of a homogeneous suspension of very small particles for which the long
time required to approach the non-uniform steady concentration distribution has
not yet elapsed. In § 4, the effects of particle stress anisotropy on the concentration
and velocity distributions, respectively, are integrated; that is, the full solutions of
the governing equations for fully developed flow in elliptical, rectangular (with and
without sidewalls) and wedge-shaped cross-sections are analysed. We conclude by
summarizing our results.

2. Concentration profiles in the absence of secondary flows
The suspension balance approach for modelling the particle and velocity

distributions in concentrated suspension flows (Jenkins & McTigue 1990; Nott &
Brady 1994; Morris & Boulay 1999; Fang et al. 2002) performs mass and momentum
balances on both particulate and suspension phases. The coupling between the two
momentum balances is achieved via the particle stress tensor Σ

p
ij , and any non-zero

gradients of the particle stress tensor result in particle migration and in a net normal
stress being exerted on the fluid phase.

In a suspension, as shown by Nott & Brady (1994), the flux of particles is given by
the average motion of all the particles

Ni = uiφ + 〈MijFj 〉 φ, (2.1)

where 〈·〉 denotes an ensemble average over all the particles contained in a volume V ,
ui is the volume averaged suspension velocity and Mij is the mobility function that
determines the velocity of the particles in response to a force Fi . Invoking the
approximation that the ensemble average of the mobility multiplied by the force on
the particles is equal to the product of the separate ensemble averages of the mobility
and the force (Nott & Brady 1994), i.e.

〈MijFj 〉 ≈ 〈Mij 〉 〈Fj 〉, (2.2)
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and approximating the mobility 〈Mij 〉 by an isotropic function that describes the
hindered motion of a particle surrounded by other particles (namely the hindered
Stokes sedimentation velocity),

〈Mij 〉 ≈ 1

6πµ0a
f δij , (2.3)

the particle flux is obtained as

Ni = uiφ +
1

6πµ0a
f 〈Fi〉 φ. (2.4)

Note that the approximations in (2.2) and (2.3) are rigorously valid for a dilute
suspension of particles which interact solely through a long-range repulsive hard-
sphere potential. They also appear, however, to be remarkably robust even for
highly concentrated anisotropic suspensions (Zarraga & Leighton 2001). Applying a
momentum balance over the particulate phase at steady state under creeping flow
conditions, we obtain

∂Σ
p
ij

∂xj

= 〈Fi〉
φ

4
3
πa3

, (2.5)

where φ/(4/3)πa3 is the number of particles per unit volume. In this paper, we assume
that the particles are neutrally buoyant so that there are no body forces applied on
the particulate phase. Combining (2.4) and (2.5), the particulate flux is given by

Ni = uiφ︸︷︷︸
Convective fluxNCi

+
2

9

a2

µ0

f
∂Σ

p
ij

∂xj︸ ︷︷ ︸
Shear-induced diffusive fluxNDi

. (2.6)

Thus, as was shown by Nott & Brady (1994), the shear-induced diffusive particle flux
is directly proportional to the gradients in the particle stress tensor Σ

p
ij .

The model is completed by assuming an appropriate constitutive equation for
the particle stress. Several constitutive equations have been developed to describe the
particle stress in terms of particle concentration and the shear geometry. Nott & Brady
developed a constitutive model in which they defined a suspension temperature and
pressure in terms of velocity fluctuations akin to granular flow, but they assumed the
suspension temperature and pressure to be isotropic. Mills & Snabre (1995) derived
an isotropic model relating the particle stress to the mean stress in the suspension
by considering the lubrication interaction between colliding spheres. Unfortunately,
these constitutive equations have the same deficiency as any isotropic model: failure
to explain the observed particle migration behaviours in geometries with curvature
(e.g. parallel-plate and cone and plate flow).

Rather than using the temperature formulation of the suspension balance model
(Nott & Brady 1994) where the particle pressure is related to local velocity fluctuations,
we find it convenient in this paper to use the measurements of Zarraga et al. (2000)
directly for describing the particle stresses, yielding a model with zero adjustable
parameters much like the approach of Morris & Boulay (1999). Zarraga et al.
(2000) characterized the dimensionless normal stresses (N1 − N2)/τ , N1/τ and (N2 +
1/2N1)/τ in the parallel-plate, cone and plate and rotating rod geometries-respectively.
These normal stress difference results were connected with the particle stress −Σp

pp/τ

extracted from the data collected by Acrivos et al. (1993) for resuspension in a Couette
device. Their results for the particle stress in the flow direction m, velocity gradient



212 A. Ramachandran and D. T. Leighton Jr

direction n and vorticity direction p are as follows

Σp
mm = −1.15ατ = −(1 − b)ατ,

Σp
nn = −ατ,

Σp
pp = −0.46ατ = −(1 + d)ατ.

⎫⎪⎬
⎪⎭ (2.7)

In this model, α is the reduced second normal stress given by

α = 2.17φ3 exp(2.34φ) (2.8)

with b = −0.15 and d = −0.54 being the first and second normal stress difference
coefficients normalized by the total particle stress in the gradient direction, i.e. b =
N1/ατ and d = N2/ατ . In practice, of course, the structure (and hence anisotropy)
of a suspension depends on the concentration φ. Zarraga et al., however, found their
data to be reasonably described by taking b and d to be constant. Also, the second
normal-stress-difference coefficient was observed to be larger than the first. The local
shear stress τ is defined as

τ = µ0µrγ̇ , (2.9)

where µ0 is the viscosity of the suspending fluid and γ̇ is the local shear rate. For a
general shear flow, γ̇ is given by

γ̇ =
√

2eij eji , (2.10)

eij being the rate of strain tensor defined as

eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (2.11)

µr is the suspension relative viscosity given by the correlation (Zarraga et al. 2000)

µr =
exp(−2.34φ)

(1 − φ/φm)3
, (2.12)

where φm = 0.62 is the maximum packing fraction. The approach of Morris & Boulay
(1999) is equivalent to that determined from rheological measurements described here
except for a different constitutive relationship for α and where b = −0.25 and
d = −0.375. The particle stress tensor is thus written as

Σ
p
ij = Σp

mmmimj + Σp
nnninj + Σp

pppipj + 2µ0(µr − 1)eij

= −ατ [(1 − b)mimj + ninj + (1 + d)pipj ] + 2µ0(µr − 1)eij

= −ατHij + 2µ0(µr − 1)eij . (2.13)

Hij is a symmetric tensor that represents the flow geometry weighted with the normal
stress difference coefficients.

Hij = (1 − b)mimj + ninj + (1 + d)pipj . (2.14)

Now let us consider steady-state concentration distributions in viscometric
geometries. At steady state, it is common to assume that both convective and
diffusive particle fluxes are identically zero. Under these conditions, the steady-state
concentration profile can be obtained from the simple equation

∂Σ
p
ij

∂xj

= 0. (2.15)
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As we shall see in §§ 3 and 4, this assumption is true for isotropic suspension models
and for anisotropic suspensions only for the commonly used viscometric geometries
(parallel-plate flow, Couette flow, cone and plate flow, etc.) that are discussed in this
section. This assumption will be shown in § 4 to break down for more complicated
geometries. First, let us examine migration in viscometric flows under the assumption
that the particle stress tensor is isotropic. In this case, the geometry tensor Hij reduces
to

H
(I )
ij = 1

3
[(1 − b) + 1 + (1 + d)] δij = 0.87δij . (2.16)

The steady-state solution to the particle flux balance equations for fully developed
unidirectional flow through any geometry with arbitrary (but uniform) cross-section
is very simple with this isotropic approximation:

ατ = constant, (2.17)

i.e. the particle stress is predicted to be identical at all points in the cross-section.
Since α is a monotonically increasing function of φ, the concentration in any region
in the conduit is inversely related to the shear stress in that region.

The simple approach described above is strictly a result of ignoring the anisotropy
of the particle stress tensor. Unfortunately, this solution holds true only for the case
of plane Poiseuille flow in a channel without sidewalls where the streamlines are
not curved. The outward migration of particles observed in the cone and plate and
parallel-plate geometries cannot be explained by the above solution. Even for circular
tubes, the particle migration towards the centre of the tube is stronger than that
calculated from the isotropic model. To see how anisotropy influences migration,
consider the case of migration in a circular tube (e.g. Fang et al. 2002).

Nr =
2

9

a2

µ0

f

[
1

r

∂

∂r

(
rΣp

rr

)
− Σ

p
θθ

r

]
= 0. (2.18)

For this geometry, the r-direction represents the velocity gradient direction and the θ

direction represents the vorticity direction. Therefore, from (2.7), we have

Σp
rr = −ατ, Σ

p
θθ = −(1 + d)ατ. (2.19)

Substitution of these particle stress components into (2.18) yields

1

r

∂

∂r
(rατ ) − (1 + d)

ατ

r
= 0 (2.20)

which can be simplified to

∂ατ

∂r︸︷︷︸
Stress gradient term

− d
ατ

r︸︷︷︸
Curvature term

= 0. (2.21)

Equation (2.21) can be solved to yield

ατ = constant × rd . (2.22)

Since d is negative, this results in stronger radial concentration gradients than for the
isotropic model (which predicts a constant particle pressure).

As shown by Morris & Boulay (1999) and Fang et al. (2002), the inclusion of the
particle stress anisotropy into the constitutive equation also enables the model to
explain the observed concentration distributions in the torsional parallel-plate and
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cone and plate geometries. For example, in the parallel-plate geometry, a flux balance
in the r-direction at steady state gives

Nr =
2

9

a2

µ0

f

[
1

r

∂

∂r

(
rΣp

rr

)
− Σ

p
θθ

r

]
= 0. (2.23)

In this geometry, the θ-direction represents the flow direction, the z-direction is the
velocity gradient direction, while the r-direction is the vorticity direction. Using the
constitutive equations of Zarraga et al. (2000), we have from (2.7) and (2.13) that

Σp
rr = −(1 + d)ατ, Σ

p
θθ = −(1 − b)ατ. (2.24)

Also, the shear rate increases linearly with the radial position r . This yields the radial
concentration gradient as

∂φ

∂r
= −1 + b + 2d

1 + d

αµr

(αµr )
′
1

r
, (2.25)

where the prime denotes the derivative with respect to concentration. Integrating (2.25)
with r and using the measured dependences of α and µr yields the concentration
distribution up to an arbitrary constant.

φ =
cφmr−(1+b+2d)/3(1+d)

φm + cr−(1+b+2d)/3(1+d)
. (2.26)

This constant c is set by choosing the average concentration in the device. The
exponent −(1 + b + 2d)/3(1 + d) is equal to 0.17 using the values for the normal
stress difference coefficients from (2.7). We can see that the model predicts a very
weak outward migration of particles, which is consistent with the apparent lack of
migration observed in parallel-plate experiments (e.g. Chapman 1990). It is still not
clear whether migration actually occurs in the parallel-plate geometry. Merhi et al.
(2005) reported the experimental measurement of an outward migration of particles
in their parallel-plate experiments. This could not be confirmed by Bricker & Butler
(2006), who did not observe any change in the apparent viscosity of the suspension
during their parallel-plate measurements. The model does, however, correctly predict
the outward migration of particles in the cone and plate geometry reported by Chow
et al. (1995) and Fang et al. (2002).

A compact and sensitive way of summarizing the steady-state concentration
distributions in viscometric flows is to determine the dimensionless concentration
gradient r∂φ/∂r described in table 1 using the constitutive equations of Zarraga et al.
(2000) for these geometries. Note that the dimensionless concentration gradient can
be predicted with no adjustable parameters using the suspension balance formulation
discussed above. The results from various experimental studies in different geometries
are presented in figure 1. We see that the agreement is excellent within the experimental
scatter of these studies.

In the viscometric geometries considered above, both components of the particle
flux vector were zero at steady state, leading to a simple prediction for the steady
concentration distribution even including the effects of anisotropy. We now consider
the more complex situation of unidirectional flow through a conduit of arbitrary
cross-section where this is no longer the case.
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Geometry Dimensionless concentration gradient

Channel flow y
∂φ

∂y
= − α

α′

Tube Poiseuille flow r
∂φ

∂r
= −(1 − d)

α

α′

Wide gap Couette flow r
∂φ

∂r
= (2 − b)

α

α′

Cone and plate flow r
∂φ

∂r
= −b + 2d

1 + d

αµr

(αµr )
′

Parallel plate geometry r
∂φ

∂r
= −1 + b + 2d

1 + d

αµr

(αµr )
′

Table 1. The dimensionless concentration gradients from the suspension balance model of
Nott & Brady (1994) with the consitutive equations of Zarraga et al. (2000) in different vis-
cometric geometries.

0.2 0.3 0.4 0.5
102

101

100

Concentration

|rdφ/dr|

Figure 1. A comparison between the experimental data and theoretical prediction of the
dimensionless concentration gradient in various geometries. Wide gap Couette data of Phillips
et al. (1992): �, 45 %; �, 50 %; �, 55%; — theory. Tube data obtained by Hampton et al.
(1997): �, 20 %; �, 30 %; �, 45%; . . . . , theory. Plane Poiseuille flow of Leighton & Acrivos
(1987): +, 45%, – · –, theoretical result. Truncated cone and plate data of Chow et al. (1995):
∗, 50 %; – – –, theory.

3. The origin of secondary flows in particulate suspensions
Consider the flow of a suspension of rigid non-colloidal particles through a conduit

of arbitrary cross-section. Let the z-axis represent the axial direction and x and y



216 A. Ramachandran and D. T. Leighton Jr

represent the cross-sectional coordinates. Since our focus in this work is on the fully
developed distributions of particle concentration φ and velocities [u, v, w] within
the cross-section (x, y-plane), we invoke the quasi-steady-state approximation, i.e. all
variations in the axial direction are ignored.

The variables in this problem are rendered dimensionless as follows:

[x, y, z] = [x∗, y∗, z∗)B, [u, v, w] = [u∗, v∗, w∗)GB2/µ0, P = P ∗GB . (3.1)

Here, the pressure P in the conduit is rendered dimensionless by the scaling GB , G

being the pressure gradient applied in the flow direction. The velocity components
u, v and w are non-dimensionalized by the scaling Uc = GB2/µ0, where B is the
characteristic length scale in the cross-section and µ0 is the viscosity of the suspending
fluid. For convenience, the asterisks accompanying the non-dimensionalized variables
will be dropped hereinafter. Also, in all subsequent equations, [x1, x2, x3] ≡ [x, y, z]
and [u1, u2, u3] ≡ [u, v, w].

The continuity equation is

∂u

∂x
+

∂v

∂y
= 0. (3.2)

A momentum balance over the suspension yields

∂Σij

∂xj

= 0. (3.3)

Here, the total suspension stress Σij is given by

Σij = −Pδij + 2eij + Σ
p
ij . (3.4)

The particle stress tensor Σ
p
ij is defined using (2.13) as

Σ
p
ij = −ατHij + 2 (µr − 1) eij . (3.5)

Combining (3.3)–(3.5), we obtain

∂

∂xj

(2µreij ) =
∂P

∂xi

+
∂

∂xj

(ατHij ). (3.6)

The tensor Hij as defined in (2.14) represents the geometry of the flow field. If the
flow were purely unidirectional, the flow mi , velocity gradient ni and the vorticity pi

directions would be given by

mi = δi3,

ni =
∂w/∂xi√

∂w/∂xk ∂w/∂xk

,

pi =
Ωi√
ΩkΩk

,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.7)

where Ωi is the vorticity vector given by

Ωi = εij3

∂w

∂xj

. (3.8)

Using (2.14), the geometry tensor can be written for purely unidrectional flows as

Hij = (1 − b)δi3δj3 + ninj + (1 + d)pipj . (3.9)

The secondary currents induced by the non-Newtonian rheology are very small in
magnitude compared to the axial velocity, and thus we may ignore their effect on the
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flow geometry tensor to leading order. Therefore, the expression for Hij in (3.9) may
also be used for the quasi-unidirectional flows expected here.

Since the velocity gradient and vorticity vectors defined above are always
orthogonal, we can write

δi3δj3 + ninj + pipj = δij . (3.10)

The geometry tensor thus reduces to

Hij = δij − bδi3δj3 + d
ΩiΩj

ΩkΩk

. (3.11)

The stress τ is defined as

τ = µrγ̇ , (3.12)

while γ̇ is defined to leading order as

γ̇ =

√(
∂w

∂x

)2

+

(
∂w

∂y

)2

. (3.13)

Because of the assumption of quasi-unidirectional flow, the total pressure P in the
system can be decomposed into an axial component P that varies linearly in axial
position (constant axial pressure gradient) and a cross-sectional component P̂ .

P (x, y, z) = P (z) + P̂ (x, y) = −z + P̂ (x, y). (3.14)

With this simplification, the momentum equations in the x-, y- and z-directions can
be written separately as

∂

∂x

[
2µr

∂u

∂x

]
+

∂

∂y

[
µr

(
∂u

∂y
+

∂v

∂x

)]

=
∂P̂

∂x
+

∂

∂x
(ατH11) +

∂

∂y
(ατH12) , (3.15a)

∂

∂x

[
µr

(
∂u

∂y
+

∂v

∂x

)]
+

∂

∂y

[
2µr

∂v

∂y

]

=
∂P̂

∂y
+

∂

∂x
(ατH21) +

∂

∂y
(ατH22) , (3.15b)

∂

∂x

(
µr

∂w

∂x

)
+

∂

∂y

(
µr

∂w

∂y

)
= −1. (3.15c)

Consider the case where the concentration distribution in the cross-section of the
conduit is uniform. This situation is physically realizable in the limit of very large
conduit to particle size ratios, i.e. B/a 
 1. In this limit, the characteristic shear-
induced migration velocity of the particle is very small, and it takes extremely long
channels for the concentration distribution to evolve from the uniform distribution
at the inlet to the non-uniform fully developed concentration distribution. Therefore,
the concentration profile can be assumed to be constant at the inlet concentration φf

and axially invariant in this asymptotic limit. With this assumption, the momentum
equations are simplified considerably.

∇2u =
1

µr

∂P̂

∂x
+ α

[
∂ (γ̇ H11)

∂x
+

∂ (γ̇ H12)

∂y

]
, (3.16a)
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∇2v =
1

µr

∂P̂

∂y
+ α

[
∂ (γ̇ H21)

∂x
+

∂ (γ̇ H22)

∂y

]
, (3.16b)

∇2w = − 1

µr

. (3.16c)

Consider the governing equations for u and v in (3.16a) and (3.16b), respectively.
The driving terms for these velocity components in the conduit are gradients in the
particle stress. Note that the isotropic part of the particle stress tensor can always be
balanced by an appropriate pressure gradient by defining an augmented pressure P̃ .

P̃ = P̂ + ατ. (3.17)

The momentum equations in the x- and y-directions can be recast in terms of the
augmented pressure P̃ .

∇2u − 1

µr

∂P̃

∂x
= αd

[
∂

∂x

(
γ̇

Ω2
1

|Ω |2

)
+

∂

∂y

(
γ̇

Ω1Ω2

|Ω |2

)]
, (3.18a)

∇2v − 1

µr

∂P̃

∂y
= αd

[
∂

∂x

(
γ̇

Ω2Ω1

|Ω |2

)
+

∂

∂y

(
γ̇

Ω2
2

|Ω |2

)]
. (3.18b)

The definition of Hij in (3.11) has been applied in the above equations. If we
differentiate (3.18a) with respect to y, (3.18b) with respect to x and subtract the two,
we obtain

∇2

(
∂u

∂y
− ∂v

∂x

)
= −∇2ω = αd

∂

∂y

[
∂

∂x

(
γ̇

Ω2
1

|Ω |2

)
+

∂

∂y

(
γ̇

Ω1Ω2

|Ω |2

)]

−αd
∂

∂x

[
∂

∂x

(
γ̇

Ω2Ω1

|Ω |2

)
+

∂

∂y

(
γ̇

Ω2
2

|Ω |2

)]
≡ ξ. (3.19)

Here, ω is the z-component of the vorticity vector that involves only the transverse
components of velocity and ξ therefore represents the source term for the vorticity
equation. Because the boundary conditions for u and v are homogeneous, (3.19) will
be satisfied by the trivial solution u = v = 0 only if ξ is identically zero. This can
occur in two ways. First, note that ξ is proportional to the reduced second normal
stress coefficient d . Thus, if the suspension were Newtonian (d = 0), the secondary
currents would vanish as expected. Alternatively, even for non-zero values of d ,
secondary currents vanish if the director derivative terms in ξ are zero by symmetry.
This occurs for the geometries in table 1. For geometries which lack this symmetry
(e.g. rectangular ducts, elliptical tubes), non-zero second normal stress differences
must give rise to secondary currents.

To appreciate the role of the director derivative term, consider the curvature term
−αdτ/r in the particle flux balance equation for a circular tube at steady state,
(2.21), which is the analogue of the terms on the right-hand side in (3.18a) and
(3.18b). This term is directly proportional to the second normal stress difference
coefficient d , the local particle pressure ατ and inversely proportional to the local
radius of streamsurface curvature. This term, which is responsible for the sharper
particle migration towards the tube centre in anisotropic suspensions, also represents
the forcing function for the secondary currents and establishes a force that drives a
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Circle Ellipse

Figure 2. Explanation of the origin of the secondary flow in an ellipse. The relative sizes of the
arrows (not to any scale) convey the driving force for circulation in the conduits represented
by the curvature term in (2.21). (a) For the circular cross-section, the driving force is identical
in all directions and therefore there is zero net circulation in the geometry. (b) For the elliptical
cross-section, the driving force from the shallow side regions is the strongest and therefore
produces a secondary current that flows towards the centre of the geometry along the major
axis and back to the sides along the top (and bottom) walls.

flow along the local radial vector normal to the axial streamsurfaces. For the tube
geometry, this driving force is identical from all directions, i.e. the driving force is
invariant in the θ-direction (figure 2) and therefore there is zero net flow in the cross-
section. However, when there is a lack of symmetry in the cross-section, as would
occur with the introduction of an eccentricity to the circle, this term produces a net
force that drives circulation currents. Since the driving force is directly proportional
to the local curvature, the anisotropic particle stress terms drive a stronger flow from
the side regions of the ellipse than from the top and bottom of the ellipse. This results
in a non-zero secondary current that flows in from the side regions along the major
axis of the ellipse and flows back along the minor axis and the top and bottom walls.

To arrive at a scaling for the magnitude of the circulation velocity, let us examine
the solution of the momentum equations in (3.16) for different geometries, beginning
with the elliptical geometry. The length scale B used for non-dimensionalization is
the semi-minor axis of the ellipse, while W is the ratio of the major axis to the minor
axis. The quantity ψ/(−d)α, where the streamfunction ψ is obtained by solving the
equation (for this and subsequent geometries)

∇2ψ = − 1

〈w〉

(
∂v

∂x
− ∂u

∂y

)
, (3.20)

is shown in figure 3 for different aspect ratios. ψ is set to 0 at all boundaries in the
cross-section. For the uniform concentration distribution assumed here, the magnitude
of the average circulation velocity uCIRC scales as

uCIRC = 〈
√

u2 + v2〉 = (−d)kαU, (3.21)

where U is the average axial velocity 〈w〉 of the suspension through the tube and k

is a scalar that is a function of the geometry of the channel only.
In figure 4, we have shown the variation of k with the inverse of the aspect ratio

1/W for the elliptical geometry. As the aspect ratio is increased, k increases and
reaches a maximum value of order 10−2 when the aspect ratio is roughly 2. This
increase is due to the disruption of symmetry provided by the introduction of the
second length scale in the cross-section. If the aspect ratio is increased further, k

decreases and assumes an asymptotic value of zero as the aspect ratio tends to
infinity. The flow is driven by the suspension anisotropy and the gradient in the
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Figure 3. Normalized streamfunction ψ(x, y)/(−d)α(φf ) (contour profile) and secondary
current profiles [u(x, y), v(x, y)] (quiver profile) assuming the concentration distribution to
be constant at φf (a) W = 1.5, (b) W = 3.0, (c) W = 5.0. The profiles are shown over one
quarter (first quadrant) of the ellipse.

directors describing the flow geometry. Since the difference in these directors from the
centre to the side regions of the conduit is fixed, increasing the horizontal length scale
decreases the magnitude of the gradient and hence the magnitude of the secondary
current. Examination of the streamfunction depicted in figure 3 shows that the shape
of the velocity distribution is roughly independent of the aspect ratio; rather, the
magnitude simply vanishes as 1/W or 1 − 1/W approach zero.

The numerical value of (−d)kα is also of interest as it represents the ratio of the
circulation velocity to that of the mean flow. The distance L that the suspension is
convected in the axial direction during the time required for the transverse circulation
in the cell scales roughly as

L

B
∼ 1

(−d)kα
, (3.22)

where B is the characteristic depth of the channel. Since α is O(1) for reasonably
concentrated suspensions (e.g. α(φ = 0.45) ∼ 0.6) and k ∼ 10−2, L is approximately
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Figure 4. The function k as defined in (3.21) as a function of the inverse of the aspect ratio
of the conduit 1/W . Results for �, rectangles and ×, ellipses of different aspect ratios.

O(102) times the channel depth. Thus, as in the case of polymeric systems, the
secondary flow is apparent only for very long conduits. Since such aspect ratios are
natural in microfluidic channels, secondary currents are more likely to be detected in
these systems.

Now consider flow through a rectangular channel. The length scale B used for non-
dimensionalizing the equations is the half-depth of the channel, while W is the aspect
ratio of the rectangle. The variation of k with the aspect ratio is superficially similar
to that of elliptical channels. As shown in figure 4, k has a maximum at an aspect
ratio of around 2. Examination of the streamfunction profiles depicted in figure 5,
however, shows that there are two circulation cells in each quadrant rather than the
single circulation cell in elliptical geometries. In general, the streamline curvature is
largest near the corners, weakest near the top and bottom walls at the centre, and
intermediate near the sidewalls. For a square channel (W = 1), the two circulation
flows from the sidewalls and the top and bottom walls are identical, and a secondary
flow pattern with 8 equal cells is set up in the cross-section. For large aspect ratios,
the flow in the side regions reaches an asymptote with a weak circulation cell adjacent
to the sidewall and a stronger cell promoting convection towards the centre. Because
this convection dies off exponentially away from the side regions, the overall average
magnitude of the convection vanishes as 1/W → 0.

It must be noted here that the secondary flow profiles observed experimentally in
polymer literature for elliptical (e.g. Giesekus 1965), square (e.g. Dodson et al. 1974;
Debbaut et al. 1997; Debbaut & Dooley 1999) and rectangular (e.g. Debbaut et al.
1997) ducts appear to be qualitatively the same as those discussed here for suspension
flow, although the constitutive equations governing the secondary flow in polymers are
completely different. The number of cells and the direction of flow in figures 3 and 5
for the elliptical and rectangular geometries observed for suspensions are identical
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Figure 5. Normalized streamfunction ψ(x, y)/(−d)α(φf ) (contour profile) and secondary
current profiles [u(x, y), v(x, y)] (quiver profile) assuming the concentration distribution to
be constant at φf for a rectangular cross-section of aspect ratio W (a) W = 1, (b) W = 3,
(c) W = 5. The separating streamlines are indicated by bold black lines. The profiles are shown
over one quarter (first quadrant) of the cross-section.

to what has been observed experimentally and theoretically for viscoelastic polymers,
and the magnitudes are again proportional to the second normal stress difference.

Consider a comparison of the scalings of the shear-induced migration velocity and
the circulation velocity. From the definition of the flux due to shear-induced migration
in (2.6), the shear-induced migration velocity scales as

uSIM = U
a2

B2

f αµr

φf

. (3.23)
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Figure 6. The function φ/f µr , which is directly related to the ratio of the scalings of the
secondary current and the shear-induced migration velocity as defined in (3.24).

The circulation velocity relative to the shear-induced migration velocity of the particle
is then

uCIRC

uSIM

= (−d)k
B2

a2

φf

f µr

. (3.24)

In figure 6, we have shown φf /f µr , the concentration-dependent part of the right-
hand side of (3.24). At low concentrations, the function asymptotes to zero because
the second normal stress difference driving the secondary flow goes to zero in the
dilute limit faster than the shear-induced migration velocity of the particles. For
very large concentrations, the shear-induced migration velocity again dominates the
circulation velocity owing to its stronger dependence on concentration. The function
shows a maximum value of O(1) at around 40 % average concentration. Therefore, for
the circulation velocity to have the same magnitude as the shear-induced migration
velocity, the quantity (−d)kB2/a2 should be O(1), i.e. the Péclet number B2/a2 should
be O(100), since (−d)k is of order 10−2. For example, the circulation velocity relative
to the shear-induced migration velocity has a value of 3 at 40 % concentration for a
B/a ratio of just 20. This indicates that the circulation currents can be comparable
or even stronger than the shear-induced migration velocities at high Péclet numbers.
For vanishingly small particles, shear-induced migration is negligible, but the effect
of the secondary flow still persists. The flow average or bulk concentration in most of
the simulations in this paper is taken as 0.4 in order to capture the maximum effect
of the secondary currents.
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4. Concentration and velocity distributions for different geometries
4.1. Governing equations and solution procedure

In § 3, we eliminated the governing equation for particle distribution from the analysis
by assuming that φ(x, y) = φf in the limit of negligible shear-induced migration,
which is appropriate when the axial length of the conduit L is much smaller than
the shear-induced migration length scale B3/a2. Here, we examine the opposite limit
of the particle distribution for finite Péclet numbers when L 
 B3/a2. To do this, in
addition to solving the continuity, (3.2), and momentum, (3.15), equations, we must
obtain the solution to the steady-state particle flux balance equation.

For general flows, the following flux balance equation must be solved to determine
the concentration distribution

∂φ

∂t
+

∂Ni

∂xi

= 0. (4.1)

Time is rendered dimensionless with the diffusive scaling µ0B/Ga2. The particle flux
vector Ni comprises the convective and diffusive contributions shown in (2.6),

Ni = χuiφ + NDi
, (4.2)

where ND is the shear-induced diffusive flux vector.

NDi
= 2

9
f

∂Σ
p
ij

∂xj

= − 2
9
f

∂ατHij

∂xj

+ 2
9
f

∂

∂xj

[2(µr − 1)eij ]. (4.3)

The hindered settling factor, f , is modelled by the Richardson–Zaki correlation.

f (φ) = (1 − φ)5.1. (4.4)

Here we use the exponent 5.1 employed by Chapman & Leighton (1991). The shear-
induced migration Péclet number χ is given by

χ =
B2/[(Uc/B)a2)]

B/Uc

=
B2

a2
, (4.5)

which may be interpreted as the ratio of the shear-induced diffusive time scale to the
convective time scale, both defined in (4.5) with respect to the characteristic length
scale B of the conduit.

In this paper, we are restricting our analysis to axially invariant flows in the steady
asymptotic limit L 
 B3/a2. In this limit, the particle conservation equation reduces
to

χ

(
u

∂φ

∂x
+ v

∂φ

∂y

)
+

∂ND1

∂x
+

∂ND2

∂y
= 0. (4.6)

Since we are considering particle flux within the cross-section of the conduit, the
deviatoric stress term in (4.3) involves gradients of the transverse velocity components
only. We have already seen in § 3 that although the secondary velocity components
have the same scaling as the axial velocity, they are numerically three orders of
magnitude smaller. Therefore the effect of the secondary currents on the particle
stress is negligible, and to a high degree of approximation we may take the shear-
induced diffusive flux vector ND as

NDi
= 2

9
f

∂Σ
p
ij

∂xj

≈ − 2
9
f

∂ατHij

∂xj

, (4.7)
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where τ and Hij may be calculated solely from the axial flow field w(x, y). On the other
hand, the convective term involving the transverse velocity must be preserved because
it is multiplied by the scaling χ , (4.5), which is usually kept high in experiments (102

or greater) in order to enable the modelling of the suspension as a continuum. Thus,
the particle flux can be reduced to

Ni = χuiφ − 2
9
f

∂ατHij

∂xj

. (4.8)

The boundary condition for the concentration balance equation is the zero-flux
condition normal to the walls. The velocity field [u, v, w] satisfies the no-slip condition
on the walls, which is justified for moderate concentrations and large B/a ratios. For
high concentrations or smaller B/a, these boundary conditions could be modified by
the introduction of wall slip (e.g. Jana, Kapoor & Acrivos 1995). Such a modification,
however, is beyond the scope of this paper.

The steady concentration and velocity distributions can be computed either by
integrating (4.6) forward in the axial coordinate z as an entrance flow problem (e.g.
Shauly et al. 1997; Miller & Morris 2006) or by integrating (4.1) forward in time as
an axially invariant start-up flow problem (e.g. Zhang & Acrivos 1994; Tirumkudulu
2001) until the profiles become fully developed. Unfortunately, this is difficult for
complex geometries owing to singularities in the constitutive equations at zero shear
stress regions in the flow, such as at the centre of a tube. While various fixes for this
problem have been used (e.g. Nott & Brady 1994; Zhang & Acrivos 1994; Morris &
Boulay 1999), here we side-step these problems by employing the iterative algorithm
discussed in Ramachandran & Leighton (2007). All the computations in this paper
were performed using the linear solvers in COMSOL 3.2.

In the subsections below, we will discuss the steady-state concentration and velocity
profiles for different geometries by comparing three cases: (i) the isotropic model,
(ii) the anisotropic model with the shear-induced migration Péclet number χ set to
0 and (iii) the anisotropic model again, but with a finite χ appropriately chosen to
elucidate the effect of the secondary currents. Although the χ = 0 case is non-physical
(this would require a particle size infinitely greater than the conduit size), we still
display the results for this asymptotic case, as it represents the limit when secondary
currents are turned off, but the anisotropy-induced particle migration is not. It should
be noted here that the area average concentration (φa =

∫ ∫
φdS/

∫ ∫
dS) is not

conserved for the three cases. This is because the simulations have been performed
not for a fixed area average concentration φa , but for a fixed flow average or bulk
concentration (φf =

∫ ∫
wφdS/

∫ ∫
wdS). The integrations in the definitions of these

average concentrations are carried out over the cross-section of the geometry.

4.2. Wedge-shaped channels

A simple geometry that demonstrates the strong effect of circulation within the cross-
section on the concentration profile is the wedge geometry (figure 7). In this geometry,
the depth varies linearly along the x-direction. The aspect ratio of the wedge is W ,
and the depth of the shallow end is h times that of the deep end. For large aspect
ratios, the depth-averaged velocity at any position scales as the square of the thickness
of the wedge at that position, while the stress scales directly as the wedge thickness.
Therefore, intuitively, we should expect migration of particles from the thick high-
shear-stress regions of the wedge to the thin low-shear-stress regions of the wedge,
leading to a high concentration of particles in the thin regions. This is exactly what is
predicted by the isotropic model as can be seen from figures 8(a) and 9(a) for a wedge
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Figure 7. Conduit with trapezoidal cross-section of aspect ratio W . The shallow side of the
wedge is a factor h times the deep side.
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Figure 8. Concentration (contour plot) and secondary current (quiver plot) profiles for the
wedge geometry (W = 4, h = 0.2) computed using the isotropic model (a) and with the
anisotropic model with (b) χ = 0 and (c) χ = 250. The profiles are shown over the top half of
the cross-section.

with an aspect ratio of 4 and a change of depth of 80 % over this width (h = 0.2) at
a flow average concentration of 30 %. Since the thin regions also move with slower
average velocities, the area average concentration is 0.29, which is greater than the
value of 0.28 calculated for a plain rectangular channel with the same mean depth. If
we compute the distributions with the anisotropic model, but with the Péclet number
set to zero to include just the migration effects of the anisotropy of the particle
stress, then the concentration in the shallow regions increases further (see figures 8b

and 9b) yielding an area average concentration of 0.31, which is greater than the bulk
concentration (φf = 0.3). If the complete effect of the anisotropy of the particle stress
(to include both secondary currents and particle diffusion) is considered by setting
the Péclet number to 250 (figure 8c), it is observed that the particles actually migrate
out of the shallow regions into the deeper regions of the channel, a trend completely
opposite to what is predicted by previous models. Because of the asymmetry provided
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Figure 9. (a) Axial concentration (φ(x, 0)) and (b) velocity ( w(x, 0)/ 〈w〉) profiles along the
wedge axis for the isotropic model (dashed line) and for the anisotropic model with χ = 0
(dash-dotted line) and χ = 250 (solid line). The wedge has an aspect ratio of 4 over which the
change in depth is 80% (h = 0.2).

by the wedge shape of the cross-section, transverse currents induced by the anisotropy
of the particle stress tensor pump particles from the thin regions out into the thicker
regions of the wedge, yielding an area average concentration of 0.27. As can be seen
from figure 9(a), the concentration near the shallow region (before the sharp drop
near the right-hand edge) for the isotropic model is around 40 %, that predicted by
the anisotropic model for χ = 0 is 55 %, while for χ = 250, this concentration is
just 28 %. We anticipate that for larger Péclet numbers, this draining of particles out
of the side pockets of the wedge will be stronger. In figure 10, we have shown the
variation of the concentration maximum near the shallow region as a function of the
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Figure 10. The concentration maximum along the midplane near the shallow end of the
wedge (W = 4, h = 0.2) as a function of the Péclet number. As can be seen from the graph,
the concentration is much higher than the bulk concentration (30%, shown by the horizontal
line) for χ = 0, but decreases gradually as the Péclet number is increased and eventually drops
below the bulk concentration for a Péclet number of approximately 235.

Péclet number. This figure clearly shows the changing nature of the shallow region
from being a pocket of high concentration to being a pocket of low concentration
with increase in Péclet number. As a result of this transition, the velocity profiles
become progressively more blunted with increase in the Péclet number (figure 9b).

4.3. Elliptical channels

Consider the elliptical channel of aspect ratio W . The length scale B chosen to define
χ is the semi-minor axis of the ellipse. In figure 11, we have shown the concentration
contours and the secondary velocity profiles for the flow of a 40 % suspension
(φf = 0.4) in an elliptical channel of aspect ratio 2 for the isotropic model and the
anisotropic model with χ = 0 and χ = 1600. Shear-induced migration results in the
diffusion of particles from the top and bottom of the tube towards the midplane
(major axis) of the ellipse. The second normal stress induces a convection from the
high-curvature regions near the sides towards the centre. At high χ (e.g. figure 11c),
the combination of these effects results in a significant depletion of particles from
the side regions. This effect is more clearly seen in figure 12, where we have plotted
the concentration distribution along the major axis of the ellipse. For χ = 1600,
the particles are convected from the sidewalls towards the centre of the ellipse more
strongly relative to the isotropic and the χ = 0 concentration profiles, causing a
‘shoulder’ in the profile. The concentration predicted by the isotropic model near the
sidewall is around 37 %, while that predicted by the anisotropic model at χ = 1600
is just 27 %. The depletion near the sidewall with respect to the 40 % flow average
concentration is thus nearly four times that predicted by the isotropic model. The
axial velocity w/ 〈w〉 along the major axis is shown for the three cases in figure 12(b).
While very similar, the velocity profile for the anisotropic model with χ = 1600
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Figure 11. Concentration φ (contour profile) and secondary current profiles [u, v] (quiver
profile) for the elliptical geometry with an aspect ratio of 2 computed using the isotropic
model (a) and the anisotropic model with (b) χ = 0 and (c) χ = 1600. The profiles are shown
over one quarter (first quadrant) of the ellipse.

shows the maximum blunting among the three owing to the stronger migration of
the particles towards the centre.

For an aspect ratio of 2 and a flow average concentration of 40 %, the average
circulation velocity 〈

√
u2 + v2 〉/〈w〉 is shown as a function of Péclet number in

figure 13. The magnitude of the circulation velocity drops sharply as the Péclet
number is increased from zero to small values, and then decreases gradually to a
non-zero asymptote for larger values of χ , but the impact of the secondary flow on
the concentration profile increases progressively. Since the depth of the channel is
small in the side regions, the curvature of the streamlines is greater near the sidewalls
than near the centre of the ellipse. This leads to large circulation cells that flow in
from the sidewalls to the centre along the horizontal axis and weak circulation cells
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Figure 12. (a) Concentration φ(x, 0) and (b) axial velocity profiles w(x, 0)/ 〈w〉 along the
centreline for the elliptical geometry with an aspect ratio of 2: dash line, isotropic model;
dash-doted line, χ = 0; solid line, χ = 1600.

near the top and bottom of the minor axis, resulting in 8 total cells in the cross-section
(figure 11), which is twice the number of cells observed in the case of a constant
concentration field in § 3. As the Péclet number is increased, the depletion of particles
from the side regions leads to a relative decrease in the driving force for the cell
along the major axis since this driving force is directly related to α, a monotonically
increasing function of concentration. This results in a decrease in the size of this cell
and an increase in the size of the cell along the minor axis with increase in Péclet
number. The interaction of the two convection cells leads to a stretching out of the
high-concentration region along the dividing streamline (see figure 11c).

Next, we examine the variation of the concentration and velocity distributions
with the average concentration φf . We see in figure 14 that the magnitude of the
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Figure 13. The variation of the average magnitude of the secondary current 〈
√

u2 + v2 〉/〈w〉
with χ for an elliptical channel of aspect ratio 2 for φf = 0.4.
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Figure 14. Variation of the average magnitude of the secondary currents 〈
√

u2 + v2〉/〈w〉
with the flow average concentration φf for an elliptical channel of aspect ratio 2 for χ = 400.
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Figure 15. (a) Concentration [φ(x, 0)] and (b) axial velocity [w(x, 0)/ 〈w〉] profiles along
the horizontal axis for an elliptical channel of aspect ratio 2 for different flow average
concentrations: dash-dotted line, χ = 0; solid line, χ = 400.

secondary currents increases monotonically with concentration, which again is because
the secondary currents scale as the reduced normal stress α. In figure 15, we have
shown the concentration and axial velocity profiles along the major axis of an ellipse
of aspect ratio 2 for φf = 0.1, 0.3 and 0.5 at χ = 0 and χ = 400. The deviation
between the two curves at χ = 0 and χ = 400 shows the additional segregation
produced by the secondary currents. The difference between the curves at the two
Péclet numbers is small for the low 10 % and the high 50 % average concentrations
and is large for the intermediate 30 % concentration. This can be explained on the
basis of the scaling analysis presented in (3.24). For low concentrations, the normal
stresses are negligible and therefore there is little difference in the concentration
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Figure 16. (a) Concentration [φ(x, 0)] and (b) axial velocity [w(x, 0)/ 〈w〉] profiles along the
horizontal axis for elliptical channels of different aspect ratios with φf = 0.4 and χ = 400:
dashed line, W = 2; dash-dotted line, W = 3; solid line, W = 5.

profile with the inclusion of the secondary currents. At high concentration, shear-
induced migration increases more rapidly with concentration than do the secondary
currents, thus the effect of convection shows a maximum at intermediate concen-
trations.

Finally, we study the effect of the aspect ratio of the ellipse on the concentration and
velocity distributions. The concentration and axial velocity profiles along the major
axis of the ellipse are shown for three different aspect ratios: 2, 3 and 5 in figure 16
for χ = 400. The anisotropic model with W = 5 (figure 16c) shows two maxima. This
can also be seen in the contour plot of the concentration profile in figure 17 for this
aspect ratio. In fact, the concentration variation for W = 5 appears to be an abrupt
change from the monotonic variations observed for the smaller aspect ratios of 2 and
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Figure 17. Concentration φ (contour profile) and secondary current profiles [u, v] (quiver
profile) for the elliptical geometry with an aspect ratio of 5 for χ = 400 and φf = 0.4. The
profiles are shown over one quarter (first quadrant) of the ellipse.

3 in figures 16(a) and 16(b), respectively. The appearance of the two concentration
maxima along the major axis of the ellipse is not a numerical artefact, but the result
of an instability due to second normal stress difference induced secondary currents.
In the limit of large aspect ratios where the effect of the side regions is weak, weak
cells are formed away from the side regions whose wavelengths are comparable to
the depth of the ellipse. To understand this phenomenon, we turn to the limiting
geometry of plane-Poiseuille flow.

4.4. Plane Poiseuille flow

Consider the plane Poiseuille flow of a suspension through a rectangular channel
without sidewalls. The length scale B used to define χ is the half-depth of the
channel. The flow is in the z-direction, y is the thin dimension of channel, and x is the
vorticity direction. The theoretical solution of the particle distribution equation for
this simple geometry is quite straightforward: ατ = constant, as noted in § 2. Since
τ is a function of y only, the concentration profile does not vary in the vorticity
direction. Also, this solution is satisfied by the governing equations for all Péclet
numbers, because the secondary current is identically zero for this solution. We shall
call this solution Φ(y). At low Péclet numbers, it was possible to retrieve this trivial
solution via the iterative solution technique employed earlier in this section (see
Ramachandran & Leighton (2007) for details of the technique). However, for Péclet
numbers greater than 400, a steady solution with the required tolerance was not
accessible with this technique, suggesting that the trivial solution Φ could be unstable
at large Péclet numbers.

To investigate the stability of Φ , we integrated the axially invariant version of the
time-dependent problem in (4.1) with time to determine the asymptotic behaviour
for an area average concentration of 37.5 % and an aspect ratio of 5 at different
Péclet numbers. In this start-up flow problem, we circumvented the numerical issue
of concentrations exceeding maximum packing by solving for the dependent variable
Ψ which is defined as

Ψ = log

[
ατ

2.17γ̇

]
. (4.9)

The concentration distribution can be obtained by inverting the above map:

φ =
φm exp(Ψ/3)

φm + exp(Ψ/3)
. (4.10)
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Figure 18. The variation of the flow average concentration with time for the start-up flow
with an initially uniform concentration distribution (φa = 0.375) for different Péclet numbers.
For χ = 0,25 and 100, the flow average concentration curves lie on top of each other and
produce the steady-state case of ατ = constant (solid line). For χ = 400,1000 and 2500 (dashed
dotted and dash-dotted lines, respectively), the flow average concentration curves stay along
the χ = 0 initially, but fall off eventually, displaying an oscillatory behaviour.

To avoid complications due to the vanishing shear rates at flow centres, the shear
rate γ̇ was augmented by a constant γ̇0, as suggested by Miller & Morris (2006):

γ̇ =
√

w2
x + w2

y + γ̇ 2
0 , (4.11)

where γ̇0 was taken as 10−4 in all the simulations. The practical implication of
this numerical fix is that concentrations never quite reach maximum packing, but
are limited to approximately 58 %. Apart from this, the computed profiles were
insensitive to the choice of γ̇0. Symmetry boundary conditions were applied at the
two side boundaries of the computational domain.

The variation of the flow average concentration with time is shown in figure 18 for
a range of Péclet numbers. At χ = 0, the flow average concentration increases with
time because of particle migration towards the centreline, and reaches an asymptote.
It can be seen that the curves for χ = 25 and 100 lie on top of the curve at χ = 0,
which represents the case when secondary currents are turned off. For χ = 400,
however, the flow average concentration follows the χ = 0 curve for a short while,
and then falls off the curve to exhibit an oscillatory variation. The reduction in
the flow average concentration is due to mixing induced by the secondary currents
within the cross-section. A similar behaviour is observed at χ = 1000 and χ = 2500.
The concentration distributions at tGa2/(µ0B) = 50 for different Péclet numbers are
shown in figure 19. The concentration profiles for χ = 0, 25 and 100 are invariant in
the vorticity (x) direction, which is consistent with the solution Φ . However, for larger
Péclet numbers, the solution is unstable with periodic structures in the x-direction.
These periodic structures translate in the x-direction, and thus there is no steady state
for these Péclet numbers (see figure 20).
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Figure 19. The concentration φ profiles at tGa2/µ0B = 50 for Péclet numbers of 0, 25, 100,
400 and 1000. The area average concentration is 0.375 for all the simulations. The profiles are
shown only for the top half of the channel cross-section.

In retrospect, the instability of Φ at high Péclet numbers should not be surprising,
since it has been shown theoretically by Brady & Carpen (2002) that the Couette
flow of a combination of a suspension (modelled with constant concentration) and
a Newtonian fluid superposed over each other is unstable to spanwise perturbations
owing to a jump in the second normal stress difference between the two fluids. It is
possible to show using similar modelling that the same is true for plane Poiseuille flow
of a suspension and a Newtonian fluid. Performing the complete stability analysis
for plane Poiseuille flow of a suspension is beyond the scope of this paper. We make
a note of this instability here, however, as it is necessary to understand the steady
results for conduits of large aspect ratios.
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Figure 20. The concentration φ profiles at a Péclet number of 400 for times tGa2/µ0B equal
to (a) 38, (b) 44, (c) 50. The profiles are shown only for the top half of the channel cross-section.
The figures show waves travelling from the centre to both the left and to the right with time.

4.5. Rectangular channels

Consider the rectangular channel of aspect ratio W . The length scale B used to define
χ is the half-depth of the channel. In figure 21, we have shown the concentration
and secondary current profiles along the horizontal symmetry axis of a rectangular
channel with an aspect ratio of W = 2 at a flow average concentration of 40 %. As
seen in the case of the ellipse, the concentration profiles are shifted away from the
sidewalls towards the centre of the channel for the anisotropic model relative to the
isotropic model. For large Péclet numbers (e.g. χ = 1000 as shown in the figure), we
observe the emergence of a second maximum in the concentration. This can be seen
more clearly in figure 22, where we have shown the contours of the concentration and
velocity profiles for χ = 0, 400 and 1000, for φf = 0.4 and aspect ratio of W = 2.
The secondary maximum is driven by the same curvature effects that produce the
instability at high χ for unbounded plane Poiseuille flow. For the rectangular channel
at small aspect ratios, however, the presence of the sidewalls fixes the location of
the maximum in the channel and convergence is observed even at χ = 1000. Note
that the concentration between the two concentration maxima varies from around
58 % to maximum packing, which is not large compared to the variation between the
concentrations at the wall and near the centre of the channel. Therefore, it is unlikely
that these concentration maxima will be accessible by experiment.

Next, we investigate the effect of aspect ratio on the concentration and secondary
current profiles in figure 23 with φf = 0.4 and χ = 100. Note that this Péclet number
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Figure 21. (a) Concentration and (b) axial velocity profiles along the horizontal axis φ(x, 0)
for the rectangular channel with aspect ratio W = 2 and φf = 0.4 for the isotropic model
(dashed line) and the anisotropic model with χ = 400 (dash-dotted line) and χ = 1000 (solid
line).

is well below the critical Péclet number for the onset of the instability in unbounded
plane Poiseuille flow, and thus convergent steady solutions could be obtained at all
aspect ratios. For low aspect ratios, there are three circulation cells in each quadrant
of the rectangle. For the uniform concentration asymptote considered in § 3, there are
only two cells per quadrant. The third cell at the top of the channel, similar to the
one observed in the case of the ellipse, appears because of the competition between
the driving forces for circulation near the channel top and bottom and the channel
sides. As the aspect ratio increases, this third cell decreases in size and eventually
vanishes owing to negligible curvature of the axial streamsurfaces in this region. For
large aspect ratios (e.g. figure 23c) at this small Péclet number, a secondary maximum
is observed near the sidewalls from both the iterative and time-dependent solutions.
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Figure 22. Concentration φ and secondary current profiles [u, v] (quiver profile) for a
rectangular channel with an aspect ratio of 2 at 40% bulk concentration for (a) χ = 0,
(b) χ = 400, (c) χ = 1000. The profiles are shown over one quarter (first quadrant) of the
cross-section.

Thus for low Péclet numbers, the concentration profile obtained is steady, with a
secondary maximum obtained at larger aspect ratios.

For high Péclet numbers and large aspect ratios, a steady solution was not obtained
with either the iterative or the time-integration techniques. Analogous to the case of
plane Poiseuille flow, spatially periodic concentration profiles translate within the
cross-section, resulting in an unsteady variation of the flow average concentration for
the start-up flow problem.
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Figure 23. Concentration φ (contour profile) and secondary current profiles [u, v] (quiver
profile) for the rectangular channel with aspect ratios (a) W = 2, (b) W = 3 and (c) W = 5
for χ = 100 and φf = 0.4. The profiles are shown over one quarter (first quadrant) of the
cross-section.

5. Conclusions
In this paper, the significance of the effect of second normal stress difference induced

secondary currents on the steady-state concentration profile for the pressure-driven
flow of a suspension through a conduit of arbitrary cross-section is demonstrated
through simulations. Traditionally, suspensions have been modelled as isotropic
Newtonian fluids with effective viscosities that vary with concentration when
calculating the velocity distribution through a conduit. The results presented in
this paper, however, show that it is critical to consider the complete non-Newtonian
rheology of a concentrated suspension when modelling flows in complex geometries.
While the magnitude of the secondary currents due to non-Newtonian effects is small,
in many cases they are the dominant mechanism governing the resulting particle
concentration distribution and lead to counterintuitive results. For example, it was
shown for the wedge geometry that the concentration profile obtained from the
isotropic shear-induced migration argument turns out to be the exact opposite of
what is obtained in the presence of the secondary flows in the cross-section. Contrary
to the prediction that particles should migrate into shallow regions and corners in
a geometry on account of their relatively lower average shear stresses, the complete
solution of the governing equations shows that secondary currents at high χ actually
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flush particles out of these regions. An important implication of this observation is
that secondary currents may circumvent the accumulation of particles in the notches
and corners of a conduit.

The secondary currents reach their largest magnitudes when the aspect ratio of
the conduit is approximately 2. With increase in Péclet number, the magnitude of
the secondary currents decreases, but the effect of the secondary currents on the
concentration profile increases progressively. The secondary flow effects are most
likely to be observed when the average concentration ranges from 30 % to 50 %,
when the magnitude of the currents is high relative to the shear-induced migration
velocity for reasonably large Péclet numbers.

The concentration distributions for plane Poiseuille flow of a suspension obtained
by the time integration of the start-up flow problem are invariant in the vorticity
direction only for Péclet numbers below a critical value. Beyond this critical Péclet
number, this solution is unstable and the secondary flow induced by second normal
stress differences leads to upwelling and downwelling regions, producing concentration
maxima and minima. Also, these upwelling and downwelling regions are found to
translate within the cross-section, and thus these solutions are unsteady.

The origin of the secondary currents in the flow of suspensions through conduits
at steady state is attributed to the asymmetry caused by an azimuthal gradient in the
curvature of the flow streamsurfaces such as occurs in any non-axisymmetric flow.
This source of asymmetry is weak and leads to small magnitudes of the circulation
currents. Therefore, the effects of these currents is realized only at high Péclet numbers.
Because conduits are typically 10 to 50 particle diameters across, however, the Péclet
number in experiments usually ranges from 100 to 2500, leading secondary currents
to dominate the migration process. The breaking of symmetry due to the presence of
a body force such as gravity is much stronger, and hence the impact of the secondary
currents is more pronounced in such cases. In a related paper (Ramachandran &
Leighton 2007), we have discussed the effect of the second normal stress difference
induced secondary currents on the concentration and velocity profiles in the classic
tube resuspension geometry and demonstrate that the experimentally observed profiles
can be reproduced nearly quantitatively using the anisotropic model discussed in this
paper. To the best of our knowledge, such secondary currents and their resulting
effect on concentration profiles have not yet been observed for neutrally buoyant
suspensions.

As is well known, in the absence of both secondary currents and wall-slip effects, the
steady concentration distribution of a suspension flowing through a straight conduit
of arbitrary cross-section is independent of the particle size. With the inclusion of non-
Newtonian secondary currents, however, we have shown that there is a pronounced
effect of the size ratio B/a for all non-axisymmetric flows.

We thank Professor Ronald Larson for some helpful discussions and for pointing
out references for the secondary flow profiles recorded in non-circular geometries for
polymer flows.
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